Your Name:	Key	BETHE
	0	
Your SID #:		
Your Section #:		
		November 7, 2011
	Your SID #:	Your SID #:

You have 53 minutes for this exam.

Exams written in pencil or erasable ink will not be re-graded under any circumstances.

Explanations should be <u>concise</u> and <u>clear</u>. I have given you more space than you should need. There is extra space on the last page if you need it.

You will need a calculator for this exam. No other study aids or materials are permitted.

Partial credit will be given, *i.e.*, if you don't know, guess.

Useful Equations:

$K_a = [H^+][A^-]/[HA]$	$pH = -\log([H^*])$	$K_b = [\text{HA}][\text{HO}^-]/[\text{A}^-]$
$K_w = [\mathrm{H}^+][\mathrm{HO}^-]$	$pH = pK_a + \log [A^-]/[HA]$	$\Delta G^{\circ} = -RT \ln K_{eq}$
R = 0.08206 L·atm/mole K	0 °C = 273.15 K	$\ln K_{eg} = -\Delta H^{\circ}/(RT) + \Delta S^{\circ}/R$
$\Delta S - q/T \ge 0$	R = 8.314 J/mole K = 1.9	87 cal/mole K
$S = k_B \ln W$	$\Delta G = \Delta H - T \Delta S$	$E = \sum n_i \varepsilon_i$
$W = N!/(\prod n_i!)$	$n_i/n_0 = \exp[-(\varepsilon_i - \varepsilon_0)/kT]$	$N = \sum n_i$
$R = N_A k_B$	$k_B = 1.38 \text{ x } 10^{-23} \text{ J/K}$	$t' = t - vx/c^2$
Chemical standard state: 1 1	M solutes, pure liquids, 1 at	m gases

$K_p = K_c(\mathrm{RT})^{\Delta n}$	$P^2/a^3 = 4\pi^2/MG$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Biochemical stan	dard state: pH 7, all species in the	ionic form found at pH 7
nano: 10 ⁻⁹	pico: 10 ⁻¹²	zepto: 10 ⁻²¹

Honor Pledge: At the end of the examination time, please write out the following sentence and sign it, or talk to me about it:

"I pledge on my honor that I have not given or received any unauthorized assistance on this examination."

+1 point extra credit for filling in this box

Chemistry	271.	section	22xx	Exam	11.1	1/7/11

1	2	1	T	1	5
k	51	e	L	5	R
IL.		e	1	5	

2/7

1. (15 pts) Short Answer

(2 pts each) Fill in the blanks:	(or parhi	Ver among every	Terlef+2	each = 12
The Boltzmann distribution des	cribes the distribution of	energy	a	mong
particles	that is observed in eac	ch of theM	izrostek	:
that comprise the predominant _	cafiguration	of the	sem ble	system 1
which is all of the microstates a	vailable at a given total	energy		
(1 pt each)		6	~	7
What is the sign of ΔG for any p	process that occurs spontane	ously at constant P,	T?	
This a special case of the (circle	one) First Law Second Lay	w) or Third Law of th	hermodynami	cs. +1
The free energy has reached a n	inimum when a system has	reached egui	librium	the
				7

2. (15 pts) van't Hoff

(a; 8 pts) Draw a van't Hoff plot for an endothermic disordering reaction. Label the axes, and show how you would determine ΔH° and ΔS° from the plot. If there is a region where the reaction is spontaneous, label

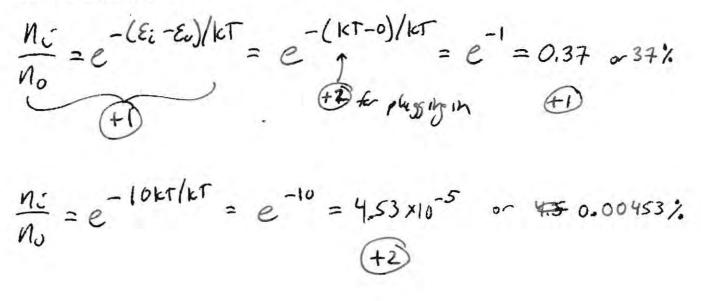
it. endetherm 2 -10(16) AH°>D second favorable at slope = - At <0 high enough 7 disorderig 45° > 0 0 1/1 DS°/R y-inlarget >0 ne= - AH% iden

carriet slope + intu cept, +2) for indiversity sper= - sh and int = 05% la sels fir Score for the page for regim of spatanity

(b; 7 pts) From the van't Hoff equation, show that if you know the equilibrium constant at one temperature T_1 , the equilibrium constant at temperature T_2 is given by the following equation:

$$K_{2} = K_{1} \times \exp\left[\left(\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)\right]$$

$$\ln\left(K_{2}\right) = \left(-\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_{2}}\right) + \frac{\Delta S^{\circ}}{R^{\circ}} \qquad (+1) \text{ for vallential} Halt - \left(\ln\left(K_{2}\right) = \left(-\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_{1}}\right) + \frac{\Delta S^{\circ}}{R^{\circ}} \right)$$

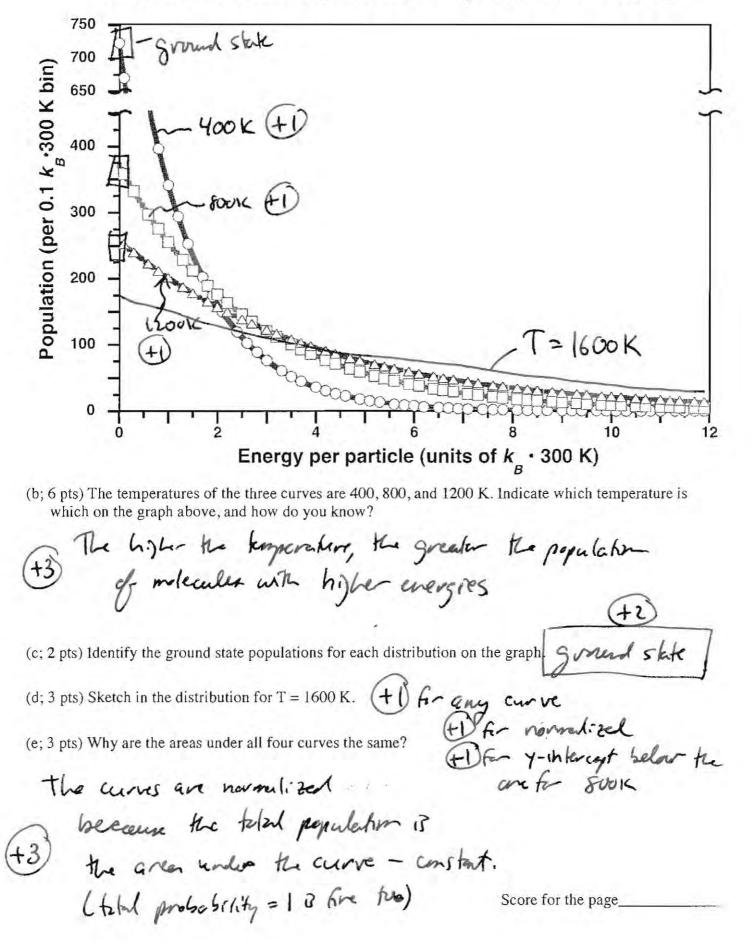

$$\left(-\ln\left(K_{2}\right) = \left(-\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_{1}}\right) + \frac{\Delta S^{\circ}}{R^{\circ}} + \frac{1}{T_{1}}\right) \qquad (+2) \text{ for iden of substruction}$$

$$\ln\left(K_{2}\right) = \ln\left(K_{1}\right) = \left(-\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_{1}} - \frac{1}{T_{1}}\right) \qquad (+2) \text{ for iden of substruction}$$

$$\ln\left(K_{2}\right) = \ln\left(K_{1}\right) + \left(\frac{\Delta h^{\circ}}{R}\right)\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+1) \text{ for solving for in (k_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+2) \text{ for solving for in (k_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+2) \text{ for solving for in (k_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+2) \text{ for fivel enquire if (1 + C_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+2) \text{ for fivel enquire if (1 + C_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+2) \text{ for fivel enquire if (1 + C_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+2) \text{ for fivel enquire if (1 + C_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+2) \text{ for fivel enquire if (1 + C_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+2) \text{ for fivel enquire if (1 + C_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+2) \text{ for fivel enquire if (1 + C_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+2) \text{ for fivel enquire if (1 + C_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+2) \text{ for fivel enquire if (1 + C_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \qquad (+2) \text{ for fivel enquire if (1 + C_{2}) = K_{1} \cdot e^{-\frac{\Delta H^{\circ}}{R}} + \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{$$

3. (20 pts) Boltzmann Distribution

(a; 6 pts) We often speak of "kT" as the energy available from thermal motion. What is the population relative to the ground state (n/n_0) of a state with an energy of kT above the ground state? What about a state with an energy of 10 kT?



3/7

BEIGE

Score for the page_

Boltzmann Distributions at Three Temperatures, N = 10000

BEIGE

BRIGE

5/7

4. (30 pts) Practical Thermodynamics

(a; 25 pts) The water-gas shift reaction [CO (g) + H₂O (g) = CO₂ (g) + H₂ (g)] is exothermic, which makes hydrogen production complicated because the syngas reaction that provides the feedstock is done at very high temperature. From the data in the table for 25 °C, calculate ΔH°_{rxn} and ΔS°_{rxn} . Assuming that ΔH°_{rxn} and ΔS°_{rxn} are constant with T, calculate the free energy change ΔG°_{rxn} at 200 °C, the equilibrium constant at 200 °C, and the temperature at which the equilibrium constant is equal to 1.

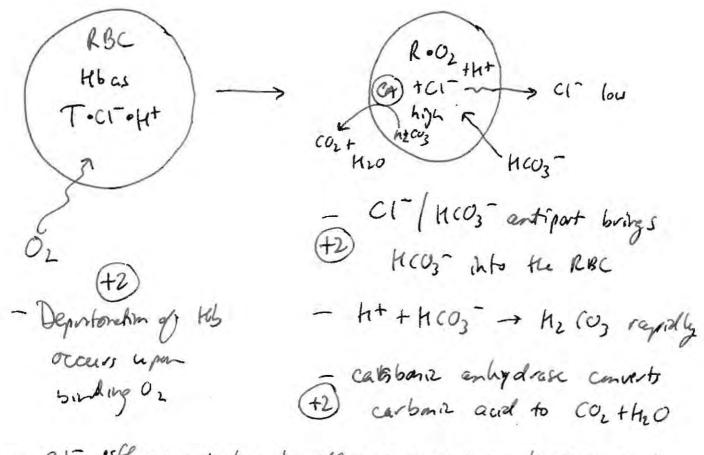
constant at 200 °C, and the temperature at whic	n the equilibrium constant is	s equal to 1.
	ΔH°_{f} in kJ/mol	S° in J/(mol K)
SHO= Z SHE (products) - R-	$\Delta H^{\circ}_{f}(CO) = -110.5$	S° (CO) = 197.7
	$\rightarrow \Delta H^{\circ}_{f} (CO_{2}) = -393.5$	$S^{\circ}(CO_2) = 213.6$
(+2) ZAK4°(reactants) P-	$\Delta H^{\circ}_{f}(H_{2}) = 0$	$S^{\circ}(H_2) = 130.6$
the dette R-	$\Delta H^{\circ}_{f}(H_{2}O, g) = -241.8$	$S^{\circ}(H_2O, g) = 188.8$
	ATTO (CTT) 740	$S^{\circ}(CH_4) = 186.2$
= (-393,5-200) testal =	$\Delta H^{\circ}_{f}(C, graphite) = 0$	S° (C, graphite) = 5.7
		$S^{\circ}(O_2) = 205$
(-110.5 - 241.8) $\delta h_{Nh}^{0} = (-393.5 + 352.3) \text{ kJ/ml}$	= -41.2 kJ/m	
DSorn = E'so(producte) - E'so(reactants) = (213,6	K is apportant ! 5 + 130,6) - (197.7 +188.8) Jland 10
AS run = (344.2 - 386.5) Jlood K =		Relatively small 550
△G man (200°C) = △H°- Toso	ε ⁽⁺⁾	Hz is a symmetric distince
= -41200 J/ml - (473.	15 K) (-42.3 J/ml	k) exothermic ordering
= -21200 5/m (+2) (5)	"/RT +21200 /(8.31	nkn -s Kfesty
Keg (LUC (197) / K) - F	= - *	4×47315) +5.38 = e J/mol K
= 218 +2	<u>c</u>	J/mol K
$T = \frac{\Delta h^{\circ}}{\Delta S^{\circ}} = \frac{-41200 \text{ mJ/m}}{-42,3 \text{ J/m}}$ (+2)	$\frac{d}{1 K} = \begin{array}{c} 974 \\ +2 \\ 6 \\ \text{fr ether} \end{array}$	- 701 °C

(b; 5 pts) Why is choosing the temperature at which to carry out an exothermic reaction often a balancing act? Name another reaction that poses the same challenge.

- One would like to raise the temperature to make the reaching of faster, but then the equilibrium becomes less favoreble. Eor state has desired T is The Keber rxn, Proteinfolding low to + 16eg] DNA hybridization (+1) breakdown of NH4N03 (20 pts) Hemoglobin and Linkage

Consider the competitive binding of chloride (Cl⁻) and oxygen (O_2) to hemoglobin. We know that the R state of Hb binds O_2 better than the T state. We are told that Cl⁻ binds better to the T state than to the R state.

(6 pts) Draw the linkage cycle that shows that O₂ binding favors the R state over the T state.


 $R + 0, \stackrel{K_1}{\leftarrow} R \cdot 0,$ K1162 = K2 K4 K1>K1 myutan Ky V K2 So Ky>K2 So 02-bound (+2) fr state favors R more.

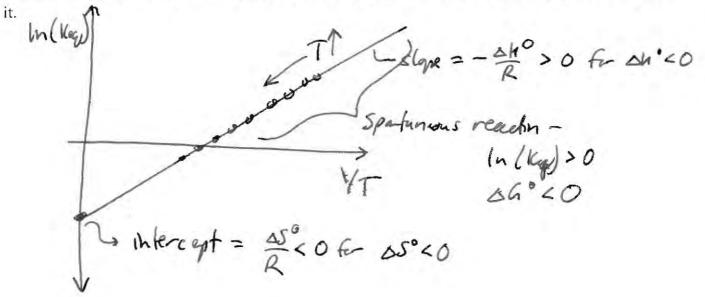
(6 pts) Draw the linkage cycle that shows that Cl⁻ binding favors the T state.

more

BETGE

(8 pts) Saturation with O₂ in the lungs tend to drive Cl⁻ off Hb. Recalling that carbonic anhydrase is located in the red blood cell (RBC), how does chloride release help to accelerate the conversion of H⁺ and bicarbonate back to CO₂ and water so that the CO₂ can be exhaled?

- CI diffusing out has the effect of concentrating 41003 at the (+2) sike of the entryone that gets not of it.


Page	Score
1	/1
2	/23
3	/13
4	/14
5	/25
6	/17
7	/8
Total	/101

BERGE

Chemistry 271, section 23xx Exam II, 11/7/11	GRAY 217
1. (15 pts) Short Answer	
(2 pts each) Fill in the blanks: (ar yarhiles	army energy (web) (+2) each energy among
The Boltzmann distribution describes the distribution of	energyamong
particles that is observed in each of	of the mizrostates
that comprise the predominant _ Config urchim	of the ensemble,
which is all of the microstates available at a given total	energy
(1 pt each)	\bigcirc 7
What is the sign of ΔG for any process that occurs spontaneous	sly at constant P, T?
This a special case of the (circle one) First Law, Second Law, o	or Third Law of thermodynamics.
The free energy has reached a minimum wh	en a system has reached equilibrium.
	1

2. (15 pts) van't Hoff

(a; 8 pts) Draw a van't Hoff plot for an exothermic ordering reaction. Label the axes, and show how you would determine ΔH° and ΔS° from the plot. If there is a region where the reaction is spontaneous, label

+1 For idea +2 for correct slope + inter cept +2 Fr axis labels + 2 For indicating values for slyre + intraget + For region of spontancity

Score for the page

(b; 7 pts) From the van't Hoff equation, show that if you know the equilibrium constant at one temperature T_1 , the equilibrium constant at temperature T_2 is given by the following equation:

$$K_{2} = K_{1} \times \exp\left[\left(\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)\right]$$

$$\ln(K_{2}) = \left(-\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_{2}}\right) + \frac{\Delta S^{\circ}}{R} \quad (1) \text{ for var't Hoff}$$

$$- \ln(K_{1}) = \left(-\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_{1}}\right) + \frac{\Delta S^{\circ}}{R} \quad (2) \text{ for iden of subtrachm}$$

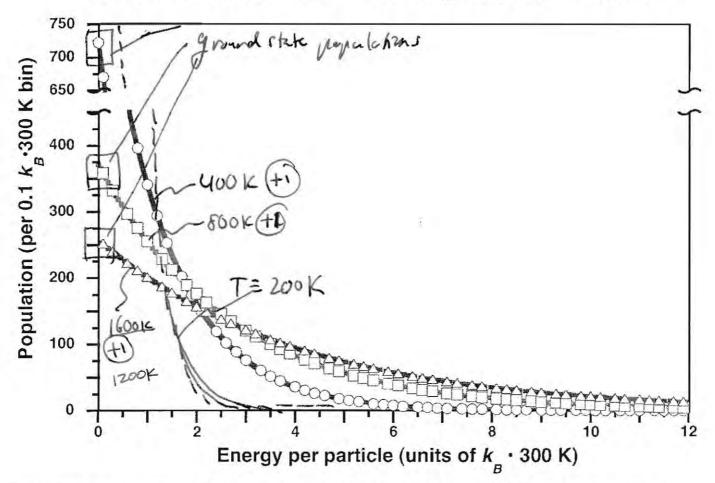
$$\frac{\ln(K_{2}) - \ln(K_{1}) = \left(-\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right) \quad (2) \text{ for iden of subtrachm}$$

$$\exp(hi K_{2}) - \ln(K_{1}) = \left(-\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right) \quad (2) \text{ for iden of subtrachm}$$

$$\exp(hi K_{2}) - \ln(K_{1}) = \left(-\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right) = \left(-\frac{4K^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)\right) = \left(-\frac{4K^{\circ}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) =$$

3. (20 pts) Boltzmann Distribution

(a; 6 pts) We often speak of "kT" as the energy available from thermal motion. What is the population relative to the ground state (n/n_0) of a state with an energy of kT above the ground state? What about a state with an energy of 5 kT?


$$\frac{n_{c}}{n_{o}} = e^{-(\epsilon_{c} - \epsilon_{o})/kT} = e^{-(kT - o)/kT} = e^{-1} = 0.37 \text{ or } 37\%$$

$$(+1) \qquad (+2) f_{o} - r_{ugging} \text{ in } (+1)$$

For
$$\mathcal{E}_{t} = 5kT$$
, $\frac{n_{t}}{n_{0}} = e^{-5kT/kT} = e^{-s} = 6.73 \times 10^{-3} \text{ or } 0.67\%$
 $+2$

Gra

Boltzmann Distributions at Three Temperatures, N = 10000

(b; 6 pts) The temperatures of the three curves are 400, 800, and 1200 K. Indicate which temperature is which on the graph above, and how do you know?

e ligher the temperatury the higher the population of mbeller in excited states.

(c; 2 pts) Identify the ground state populations for each distribution on the graph. Boxes a graph (42) (d; 3 pts) Sketch in the distribution for T = 200 K. (1) for any curve (e; 3 pts) Why are the areas under all four curves the same? - The curves are normelized (+3) become the total pymbhin D for area - it's a curstant (or - total prebability = 1 3 dkm)

Score for the page_

4/7

GRAY

GRAY 517

Score for the page____

5. (30 pts) Practical Thermodynamics

(a; 25 pts) The water-gas shift reaction [CO (g) + H₂O (g) \Rightarrow CO₂ (g) + H₂ (g)] is exothermic, which makes hydrogen production complicated because the syngas reaction that provides the feedstock is done at very high temperature. From the data in the table for 25 °C, calculate ΔH°_{rxn} and ΔS°_{rxn} . Assuming that ΔH°_{rxn} and ΔS°_{rxn} are constant with T, calculate the free energy change ΔG°_{rxn} at 300 °C, the equilibrium constant at 300 °C, and the temperature at which the equilibrium constant is equal to 1.

$$\Delta H^{\circ}_{\text{rwn}} = \sum_{i}^{r} \Delta H_{i}^{\circ}(\text{products}) - \frac{\Delta H_{i}^{\circ}(\text{ins} \text{J/mole} | S^{\circ} \text{ in } \text{J/mole} | S^{\circ} | S^$$

GRA

(b; 5 pts) Why is choosing the temperature at which to carry out an exothermic reaction often a balancing act? Name another reaction that poses the same challenge.

- One would like to run the reaching at is low a temperature as possible to maximize Key, (+3) but then it will go too slowly to be useful [or state that are would like to run it hat to Prate] (2) The Haber NXN (N2+342 = 2NH3) in or DNA hybridizetim ok combustion

Page	Score
1	/1
2	/23
3	/13
4	/14
5	/20
6	/25
7	/5
Total	/101

Score for the page_

GRAY